Magnetic Immobilization and Growth of Nannochloropsis oceanica and Scenedasmus almeriensis

Microalgae are used in industrial and pharmaceutical applications. Their performance on biological applications may be improved by their immobilization. This study presents a way of cell immobilization using microalgae carrying magnetic properties. Nannochloropsis oceanica and Scenedasmus almeriensis cells were treated enzymatically (cellulase) and mechanically (glass beads), generating protoplasts as a means of incorporation of magnetic nanoparticles.
Scanning electron microscopy images verified the successful cell wall destruction for both of the examined microalgae cells. Subsequently, protoplasts were transformed with magnetic nanoparticles by a continuous electroporation method and then cultured on a magnetic surface. Regeneration of transformed protoplasts was optimized using various organic carbon and amino acid supplements. Both protoplast preparation methods demonstrated similar efficiency. Casamino acids, as source of amino acids, were the most efficient compound for N. oceanica protoplasts regeneration in enzymatic and mechanical treatment, while for S. almeriensis protoplasts regeneration, fructose, as source of organic carbon, was the most effective. Protoplasts transformation efficiency values with magnetic nanoparticles after enzymatic or mechanical treatments for N. oceanica and S. almeriensis were 17.8% and 10.7%, and 18.6% and 15.7%, respectively. Finally, selected magnetic cells were immobilized and grown on a vertical magnetic surface exposed to light and without any supplement.

Crassaminicella thermophila sp. nov., a moderately thermophilic bacterium isolated from a deep-sea hydrothermal vent chimney and emended description of the genus Crassaminicella

A novel moderately thermophilic, anaerobic, heterotrophic bacterium (strain SY095T) was isolated from a hydrothermal vent chimney located on the Southwest Indian Ridge at a depth of 2730 m. Cells were Gram-stain-positive, motile, straight to slightly curved rods forming terminal endospores. SY095T was grown at 45-60 °C (optimum 50-55 °C), pH 6.0-7.5 (optimum 7.0), and in a salinity of 1-4.5 % (w/v) NaCl (optimum 2.5 %). Substrates utilized by SY095T included fructose, glucose, maltose, N-acetyl glucosamine and tryptone. Casamino acid and amino acids (glutamate, glutamine, lysine, methionine, serine and histidine) were also utilized. The main end products from glucose fermentation were acetate, H2 and CO2. Elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors.
The predominant cellular fatty acids were C14 : 0 (60.5%) and C16 : 0 (7.6 %). The main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, five unidentified phospholipids and two unidentified aminophospholipids. No respiratory quinones were detected. The chromosomal DNA G+C content was 30.8 mol%. The results of phylogenetic analysis of the 16S rRNA gene sequences indicated that SY095T was closely related to Crassaminicella profunda Ra1766HT (95.8 % 16S rRNA gene sequence identity). SY095T exhibited 78.1 % average nucleotide identity (ANI) to C. profunda Ra1766HT. The in silico DNA-DNA hybridization (DDH) value indicated that SY095T shared 22.7 % DNA relatedness with C. profunda Ra1766HT. On the basis of its phenotypic, genotypic and phylogenetic characteristics, SY095T is suggested to represent a novel species of the genus Crassaminicella, for which the name Crassaminicella thermophila sp. nov. is proposed. The type strain is SY095T (=JCM 34213=MCCC 1K04191). An emended description of the genus Crassaminicella is also proposed.

Desulfomarina profundi gen. nov., sp. nov., a novel mesophilic, hydrogen-oxidizing, sulphate-reducing chemolithoautotroph isolated from a deep-sea hydrothermal vent chimney

A novel mesophilic, strictly anaerobic, chemolithoautotrophic sulphate-reducing bacterium, designated strain KT2T, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc. Strain KT2T grew at 25-40 °C (optimum 35 °C) and pH 5.5-7.0 (optimum 6.6) in the presence of 25-45 g l-1 NaCl (optimum 30 g l-1). Growth occurred with molecular hydrogen as the electron donor and sulphate, thiosulphate, and sulphite as the electron acceptors. The isolate utilized CO2 as the sole carbon source for chemolithoautotrophic growth on H2. Glycerol, succinate, fumarate, malate, glutamate, or casamino acids could serve as an alternative electron donor in the presence of CO2. Malate, citrate, glutamate, and casamino acids were used as fermentative substrates for weak growth.
The G+C content of genomic DNA was 46.1 %. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KT2T is a member of the family Desulfobulbaceae, showing a sequence similarity of 94.3 % with Desulforhopalus singaporensis. Phylogenomic analysis based on concatenated 156 single-copy marker genes confirmed the same topology as the 16S rRNA gene phylogeny. The ANI and AAI values between strain KT2T and related genera of the family Desulfobulbaceae were 65.6-68.6 % and 53.1-62.9 %. Based on the genomic, molecular, and physiological characteristics, strain KT2T represents a novel genus and species within the family Desulfobulbaceae, for which the name Desulfomarina profundi gen. nov., sp. nov. is proposed, with KT2T (=JCM 34118T = DSM 111364T) as the type strain.

Evaluation of immunochromatographic test of Shiga toxin 2e in enrichment cultures of swine edema disease clinical samples

To simplify the diagnosis of swine edema disease, overnight culture supernatants of swine clinical samples were assayed using immunochromatographic test strips we developed previously. Small-intestinal contents, mesenteric lymph nodes, and fecal samples were cultured in casamino acid-yeast extract broth overnight, after which supernatants were loaded onto immunochromatographic test strips to determine whether they could detect Shiga toxin 2e (Stx2e). Among 23 clinical samples in which PCR-identified stx2e-positive E. coli were isolated, samples from seven of ten small-intestinal contents, one of three mesenteric lymph nodes and six of ten fecal samples showed Stx2e-positive reactions in the protein-based immunochromatographic test. Additionally, one small-intestinal content sample, in which stx2e-positive E. coli were not isolated, showed an Stx2e-positive reaction.
Furthermore, the immunochromatographic test results of the samples were associated with the toxin concentration determined by sandwich ELISA and cytotoxicity assay results on Vero cells. The toxin concentration range of the samples with positive and negative reactions were 2.1-196.2 ng/ml and 0-12.8 ng/ml, respectively. The sensitivity and specificity of this immunochromatographic test strip calculated from all clinical samples analyzed in this study were 60.9% and 94.4%, respectively. Our immunochromatographic test strip has strong potential for simple and accurate diagnosis for edema disease by detecting toxin expression, complementing the PCR method.

Staphylococcus aureus Strain-Dependent Biofilm Formation in Bone-Like Environment

Staphylococcus aureus species is an important threat for hospital healthcare because of frequent colonization of indwelling medical devices such as bone and joint prostheses through biofilm formations, leading to therapeutic failure. Furthermore, bacteria within biofilm are less sensitive to the host immune system responses and to potential antibiotic treatments. We suggested that the periprosthetic bone environment is stressful for bacteria, influencing biofilm development. To provide insights into S. aureus biofilm properties of three strains [including one methicillin-resistant S. aureus (MRSA)] under this specific environment, we assessed several parameters related to bone conditions and expected to affect biofilm characteristics. We reported that the three strains harbored different behaviors in response to the lack of oxygen, casamino acids and glucose starvation, and high concentration of magnesium.

TSB W/ CASAMINO ACIDS

from Alphabiosciences
T20-134-10kg | 10 kg: 1615.00 EUR

TSB W/ CASAMINO ACIDS

from Alphabiosciences
T20-134-2kg | 2kg: 390.00 EUR

TSB W/ CASAMINO ACIDS

from Alphabiosciences
T20-134-500g | 500 g: 142.00 EUR

Casamino Acid

from Bio Basic
CB3060 | 100g: 62.18 EUR

Aristolochic acids

from Unibiotest
AT287 | 1mg: 1368.00 EUR

Aristolochic acids

from Unibiotest
AT289 | 1mg: 1368.00 EUR

Aristolochic acids

from Unibiotest
AG287 | 1 mg: 523.00 EUR

Aristolochic acids

from Unibiotest
AG289 | 1 mg: 523.00 EUR

Polyphosphoric acids

from Abbexa
abx186046-5g | 5 g: 189.00 EUR

Casein acids hydrolysate

from Abbexa
abx082407-100g | 100 g: 230.00 EUR

YNB, without Amino Acids

from Bio Basic
S507 | 100g: 91.76 EUR

Lipoteichoic Acids (LTA) ELISA Kit

from Abbexa
abx555943-96tests | 96 tests: 668.00 EUR

Total Bile Acids Assay Kit

from Abbexa
abx098455-BeckmanR160ml1R220ml1 | Beckman; R1: 60ml×1 R2: 20ml×1: 347.00 EUR

Total Bile Acids Assay Kit

from Abbexa
abx098455-Hitachi7020R145ml2R215ml2 | Hitachi7020; R1: 45ml×2 R2: 15ml×2: 425.00 EUR

Total Bile Acids Assay Kit

from Abbexa
abx098455-Hitachi7170R121ml1R27ml1 | Hitachi 7170; R1: 21ml×1 R2: 7ml×1: 237.00 EUR

Total Bile Acids Assay Kit

from Abbexa
abx098455-Hitachi7170R160ml1R220ml1 | Hitachi 7170; R1: 60ml×1 R2: 20ml×1: 347.00 EUR

Dog Epoxyeicosatrienoic acids ELISA kit

from BlueGene
E08E0166-192T | 192 tests: 1270.00 EUR

Dog Epoxyeicosatrienoic acids ELISA kit

from BlueGene
E08E0166-48 | 1 plate of 48 wells: 520.00 EUR

Dog Epoxyeicosatrienoic acids ELISA kit

from BlueGene
E08E0166-96 | 1 plate of 96 wells: 685.00 EUR
Each strain presented different biofilm biomass and live adherent cells proportion, or matrix production and composition. However, the three strains shared common responses in a bone-like environment: a similar production of extracellular DNA and engagement of the SOS response. This study is a step toward a better understanding of periprosthetic joint infections and highlights targets, which could be common among S. aureus strains and for future antibiofilm strategies.
Keywords: MRSA; MSSA; biofilms; bone microenvironment; prosthetic joint infection.

Leave a Reply

Your email address will not be published. Required fields are marked *