Significance: Macrophages are immune sentinels located throughout the body that function in both the amplification and resolution of the inflammatory response. The circadian clock has emerged as a central regulator of macrophage inflammation. Reduction-oxidation (REDOX) reactions are central to both circadian clock and macrophage function. Recent Advances: Circadian regulation of metabolism controls the macrophage inflammatory response, whereby disruption of the clock causes dysfunctional inflammation. Altering metabolism and reactive oxygen/nitrogen species (RONS) production rescues the inflammatory phenotype of clock-disrupted macrophages.
Critical issues: The circadian clock possesses many layers of regulation. Understanding how REDOX reactions coordinate clock function is critical to uncover the full extent of circadian regulation of macrophage inflammation. We provide insights into how circadian regulation of REDOX affects macrophage pattern recognition receptor signaling, immunometabolism, phagocytosis, and inflammasome activation.
Future directions: Many diseases associated with aberrant macrophage derived inflammation exhibit time of day rhythms in disease symptoms and severity and are sensitive to circadian disruption. Macrophage function is highly dependent on REDOX reactions that signal through RONS. Future studies are needed to evaluate the extent of circadian control of macrophage inflammation, specifically in the context of REDOX signaling.
Sarcopenia Is Associated with Metabolic Syndrome in Korean Adults Aged over 50 Years: A Cross-Sectional Study
This study assessed the association between sarcopenia and metabolic syndrome in Korean adults aged over 50 years. The study obtained data from the Korea National Health and Nutrition Examination Survey (KNHANES, 2008-2011), a cross-sectional and nationally representative survey conducted by the Korean Centers for Disease Control and Prevention. Among the 8363 participants included in this study, the prevalence rate of sarcopenia according to metabolic syndrome was stratified by sex.
Crude odds ratios not adjusted for any variables were 1.827 (1.496-2.231) in males, 2.189 (1.818-2.635) in females, and 2.209 (1.766-2.331) in total participants compared with non-sarcopenia. Model 3, which was adjusted for all variables that could affect sarcopenia and metabolic syndrome, showed significant increases in the odds ratios, to 1.957 (1.587-2.413) in males, 1.779 (1.478-2.141) in females, and 1.822 (1.586-2.095) for total participants. The results suggest that the association between sarcopenia and metabolic syndrome is significant in Korean adults.
Genome-Wide Characterization of SARS-CoV-2 Cytopathogenic Proteins in the Search of Antiviral Targets
Therapeutic inhibition of critical viral functions is important for curtailing coronavirus disease 2019 (COVID-19). We sought to identify antiviral targets through the genome-wide characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins that are crucial for viral pathogenesis and that cause harmful cytopathogenic effects.
All 29 viral proteins were tested in a fission yeast cell-based system using inducible gene expression. Twelve proteins, including eight nonstructural proteins (NSP1, NSP3, NSP4, NSP5, NSP6, NSP13, NSP14, and NSP15) and four accessory proteins (ORF3a, ORF6, ORF7a, and ORF7b), were identified that altered cellular proliferation and integrity and induced cell death. Cell death correlated with the activation of cellular oxidative stress. Of the 12 proteins, ORF3a was chosen for further study in mammalian cells because it plays an important role in viral pathogenesis and its activities are linked to lung tissue damage and a cytokine storm. In human pulmonary and kidney epithelial cells, ORF3a induced cellular oxidative stress associated with apoptosis and necrosis and caused activation of proinflammatory response with production of the cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IFN-β1, possibly through the activation of nuclear factor kappa B (NF-κB).
To further characterize the mechanism, we tested a natural ORF3a Beta variant, Q57H, and a mutant with deletion of the highly conserved residue, ΔG188.
Compared with wild-type ORF3a, the ΔG188 variant yielded more robust activation of cellular oxidative stress, cell death, and innate immune response. Since cellular oxidative stress and inflammation contribute to cell death and tissue damage linked to the severity of COVID-19, our findings suggest that ORF3a is a promising, novel therapeutic target against COVID-19.
IMPORTANCE The ongoing COVID-19 pandemic caused by SARS-CoV-2 has claimed over 5.5 million lives with more than 300 million people infected worldwide. While vaccines are effective, the emergence of new viral variants could jeopardize vaccine protection. Treatment of COVID-19 by antiviral drugs provides an alternative to battle against the disease. The goal of this study was to identify viral therapeutic targets that can be used in antiviral drug discovery.
Utilizing a genome-wide functional analysis in a fission yeast cell-based system, we identified 12 viral candidates, including ORF3a, which cause cellular oxidative stress, inflammation, apoptosis, and necrosis that contribute to cytopathogenicity and COVID-19. Our findings indicate that antiviral agents targeting ORF3a could have a great impact on COVID-19.
Copolymers Containing 1-Methyl-2-phenyl-imidazole Moieties as Permanent Dipole Generating Units: Synthesis, Spectroscopic, Electrochemical, and Photovoltaic Properties
New donor-acceptor conjugated alternating or random copolymers containing 1-methyl-2-phenylbenzimidazole and benzothiadiazole (P1), diketopyrrolopyrrole (P4), or both acceptors (P2) are reported. The specific feature of these copolymers is the presence of a permanent dipole-bearing moiety (1-methyl-2-phenyl imidazole (MPI)) fused with the 1,4-phenylene ring of the polymer main chain.
For comparative reasons, polymers of the same main chain but deprived of the MPI group were prepared, namely, P5 with diketopyrrolopyrrole and P3 with both acceptors. The presence of the permanent dipole results in an increase of the optical band gap from 1.51 eV in P3 to 1.57 eV in P2 and from 1.49 eV in P5 to 1.55 eV in P4. It also has a measurable effect on the ionization potential (IP) and electrochemical band gap (EgCV), leading to their decrease from 5.00 and 1.83 eV in P3 to 4.92 and 1.79 eV in P2 as well as from 5.09 and 1.87 eV in P5 to 4.94 and 1.81 eV in P4.
Moreover, the presence of permanent dipole lowers the exciton binding energy (Eb) from 0.32 eV in P3 to 0.22 eV in P2 and from 0.38 eV in P5 to 0.26 eV in P4. These dipole-induced changes in the polymer properties should be beneficial for photovoltaic applications. Bulk heterojunction solar cells fabricated from these polymers (with PC71BM acceptor) show low series resistance (rs), indicating good electrical transport properties. The measured power conversion efficiency (PCE) of 0.54% is limited by the unfavorable morphology of the active layer.
Preparation of Naringenin Nanosuspension and Its Antitussive and Expectorant Effects
Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility.
To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method.
DMEM/F12from Elabscience Biotech |
PM150312-500mL |
500 mL: 10.00 EUR |
DMEM/F12from Elabscience Biotech |
PM150312 |
500mL: 10.00 EUR |
DMEM/F12from MyBiosource |
MBS2567519-500mL |
500mL: 80.00 EUR |
DMEM/F12from MyBiosource |
MBS2567519-5x500mL |
5x500mL: 360.00 EUR |
Special DMEMfrom Addexbio |
C0003-06 |
RT 500 mL Bottle: 66.70 EUR |
Optimized DMEMfrom Addexbio |
C0003-02 |
RT 500 mL Bottle: 23.99 EUR |
Formulated DMEMfrom Addexbio |
C0003-01 |
RT 500 mL Bottle: 22.99 EUR |
Specialized DMEMfrom Addexbio |
C0003-03 |
RT 500 mL Bottle: 30.00 EUR |
DMEM/F-12from Addexbio |
C0013-16 |
RT 500 mL Bottle: 28.99 EUR |
SILAC - DMEM/F12from AthenaES |
0423 |
500 ml: 41.50 EUR |
SILAC- DMEM/F12from AthenaES |
0433 |
1L: 33.70 EUR |
DMEM/F12, HEPESfrom Tribioscience |
TBS8083-500ML |
500mL: 36.00 EUR |
DMEM/F12, powderfrom Elabscience Biotech |
PM150312P-110L |
1×10 L: 45.00 EUR |
DMEM/F12, powderfrom Elabscience Biotech |
PM150312P-150L |
1×50 L: 158.00 EUR |
DMEM/F12, powderfrom Elabscience Biotech |
PM150312P-51L |
5×1 L: 35.00 EUR |
The particle size, morphology, and drug-loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive effect significantly compared with the original NRG, the cough frequency was decreased from 22 to 15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s.
Besides, NRG-NSps also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02 to 1.45 μg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG significantly and possess a potential clinical application.